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Introduction

¨ Classification 
¤ 2 class of classification 

problems:
n Binary: medical diagnosis (yes / 

no)
n Multicategory: Letter recognition 

(A, B, C…)
¤ Binary problems are usually 

easier
¤ Some classifiers do not support 

multiple classes
n SVM, PDFC…

Object 
recognition

100

Automated protein 
classification

50

300-600 

Digit recognition

10

Phoneme recognition
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Una aplicación real en KAGGLE de Problema Multiclase

For this competition, we have 
provided a dataset with 93 
features for more than 200,000 
products. The objective is to build 
a predictive model which is able to 
distinguish between our main 
product categories. The winning 
models will be open sourced.
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Binarization

¨ Decomposition of the multi-class problem
¤ Divide and conquer strategy
¤ Multi-class à Multiple easier to solve binary problems

n For each binary problem 
n 1 binary classifier = base classifier

n Problem
n How we should make the decomposition? 
n How we should aggregate the outputs?

Aggregation 
or 

Combination

Classifier_1

Classifier_i

Classifier_n

Final Output

Ensemble of classifiers
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Decomposition Strategies

¨ “One-vs-One” (OVO)
¤ 1 binary problem for each pair of classes

n Pairwise Learning, Round Robin, All-vs-All…
n Total = m(m-1) / 2 classifiers

Decomposition Aggregation
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One-vs-One

¨ Advantages
¤ Smaller (number of instances)
¤ Simpler decision boundaries

n Digit recognition problem by pairwise learning
n linearly separable [Knerr90] (first proposal)

¤ Parallelizable
¤ …

[Knerr90] S. Knerr, L. Personnaz, G. Dreyfus, Single-layer learning revisited: A stepwise procedure for
building and training a neural network, in: F. Fogelman Soulie, J. Herault (eds.), Neurocomputing: Algorithms,
Architectures and Applications, vol. F68 of NATO ASI Series, Springer-Verlag, 1990, pp. 41–50.
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One-vs-One

¨ Disadvantages
¤ Higher testing times (more classifiers)
¤ Non-competent examples [Fürnkranz06]

¨ Many different aggregation proposals
¤ Simplest: Voting strategy

n Each classifier votes for the predicted class
n Predicted = class with the largest nº of votes

[Fürnkranz06] J. Fürnkranz, E. Hüllermeier, S. Vanderlooy, Binary decomposition methods for multipartite
ranking, in: W. L. Buntine, M. Grobelnik, D. Mladenic, J. Shawe-Taylor (eds.), Machine Learning and
Knowledge Discovery in Databases, vol. 5781(1) of LNCS, Springer, 2006, pp. 359–374.
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One-vs-One

¨ Related works
¤ Round Robin Ripper (R3) [Fürnkranz02]
¤ Fuzzy R3 (FR3) [Huhn09]
¤ Probability estimates by Pairwise Coupling [Wu04]
¤ Comparison between OVO, Boosting and Bagging
¤ Many aggregation proposals

n There is not a proper comparison between them

[Fürnkranz02] J. Fürnkranz, Round robin classification, Journal of Machine Learning Research 2 (2002) 721–747.

[Huhn09] J. C. Huhn, E. Hüllermeier, FR3: A fuzzy rule learner for inducing reliable classifiers, IEEE Transactions on
Fuzzy Systems 17 (1) (2009) 138–149.

[Wu04] T. F. Wu, C. J. Lin, R. C. Weng, Probability estimates for multi-class classification by pairwise coupling,
Journal of Machine Learning Research 5 (2004) 975–1005.

[Fürnkranz03] J. Fürnkranz, Round robin ensembles, Intelligent Data Analysis 7 (5) (2003) 385–403.

[Fürnkranz03]

15/81



Decomposition Strategies

¨ “One-vs-All” (OVA)
¤ 1 binary problem for each class

n All instances in each problem
n Positive class: instances from the class considered
n Negative class: instances from all other classes

n Total = m classifiers

Decomposition

Aggregation
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One-vs-All

¨ Advantages
¤ Less nº of classifiers
¤ All examples are “competent”

¨ Disadvantages
¤ Less studied in the literature

n low nº of aggregations
n Simplest: Maximum confidence rule (max(rij))

¤ More complex problems
¤ Imbalance training sets
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One-vs-All

¨ Related Works
¤ Rifkin and Klatau [Rifkin04]

n Critical with all previous literature about OVO
n OVA classifiers are as accurate as OVO when the base 

classifier are fine-tuned (about SVM)

¨ In general
¤ Previous works proved goodness of OVO 

n Ripper and C4.5, cannot be tuned

[Rifkin04] R. Rifkin, A. Klautau, In defense of one-vs-all classification, Journal of Machine Learning
Research 5 (2004) 101–141.
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Decomposition Strategies

¨ Other approaches
¤ ECOC (Error Correcting Output Code) [Allwein00]

n Unify (generalize) OVO and OVA approach
n Code-Matrix representing the decomposition

n The outputs forms a code-word
n An ECOC is used to decode the code-word

n The class is given by the decodification

Class
Classifier

C1 C2 C3 C4 C5 C5 C7 C8 C9

Class1 1 1 1 0 0 0 1 1 1

Class2 0 0 -1 1 1 0 1 -1 -1

Class3 -1 0 0 -1 0 1 -1 1 -1

Class4 0 -1 0 0 -1 -1 -1 -1 1

[Allwein00] E. L. Allwein, R. E. Schapire, Y. Singer, Reducing multiclass to binary: A unifying approach for 
margin classifiers, Journal of Machine Learning Research 1 (2000) 113–141.
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Decomposition Strategies

¨ Other approaches
¤ Hierarchical approaches

n Distinguish groups of classes in each nodes

¤ Detailed review of decomposition strategies in [Lorena09]

n Only an enumeration of methods
n Low importance to the aggregation step

[Lorena09] A. C. Lorena, A. C. Carvalho, J. M. Gama, A review on the combination of binary classifiers
in multiclass problems, Artificial Intelligence Review 30 (1-4) (2008) 19–37.
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Combination of the outputs

¨ Aggregation phase
¤ The way in which the outputs of the base classifiers are 

combined to obtain the final output.
¤ Key-factor in OVO and OVA ensembles
¤ Ideally, voting and max confidence works

n In real problems
n Contradictions between base classifiers
n Ties
n Base classifiers are not 100% accurate
n …
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State-of-the-art on aggregation for OVO

¨ Starting from the score-matrix

¤ rij = confidence of classifier in favor of class i
¤ rji = confidence of classifier in favor of class j 

n Usually: rji = 1 – rij (required for probability estimates)
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State-of-the-art on aggregation for OVO

¨ Voting strategy (VOTE) [Friedman96]
¤ Each classifier gives a vote for the predicted class
¤ The class with the largest number of votes is predicted

n where sij is 1 if rij > rji and 0 otherwise. 

¨ Weighted voting strategy (WV)
¤ WV = VOTE but weight = confidence

[Friedman96] J. H. Friedman, Another approach to polychotomous classification, Tech. rep., Department
of Statistics, Stanford University (1996).
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State-of-the-art on aggregation for OVO

¨ Classification by Pairwise Coupling (PC)[Hastie98]
¤ Estimates the joint probability for all classes 

n Starting from the pairwise class probabilities
n rij = Prob(Classi | Classi or Classj)

n Find the best approximation
n Predicts: 

¤ Algorithm: Minimization of Kullack-Leibler (KL) distance

n where and     is the number of examples 
of classes i and j

[Hastie98] T. Hastie, R. Tibshirani, Classification by pairwise coupling, Annals of Statistics 26 (2) (1998) 451–471.
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State-of-the-art on aggregation for OVO

¨ Decision Directed Acyclic Graph (DDAG) [Platt00]
¤ Constructs a rooted binary acyclic graph 

n Each node is associated to a list of classes and a binary classifier
n In each level a classifier discriminates between two classes

n The class which is not predicted is removed

n The last class remaining on the list is the final output class.

[Platt00] J. C. Platt, N. Cristianini and J. Shawe-Taylor, Large Margin
DAGs for Multiclass Classification, Proc. Neural Information Processing
Systems (NIPS’99), S.A. Solla, T.K. Leen and K.-R. Müller (eds.), (2000)
547-553.
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State-of-the-art on aggregation for OVO

¨ Learning Valued Preference for Classification (LVPC)
¤ Score-matrix = fuzzy preference relation
¤ Decomposition in 3 different relations

n Strict preference

n Conflict
n Ignorance

¤ Decision rule based on voting from the three relations

n where Ni is the number of examples of class i in training 

[Hüllermeier08] E. Hüllermeier and K. Brinker. Learning valued preference structures for solving classification
problems. Fuzzy Sets and Systems, 159(18):2337–2352, 2008.

[Hüllermeier08,H
uhn09]
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¨ Non-Dominance Criterion (ND) [Fernandez09]
¤ Decision making and preference modeling [Orlovsky78]

¤ Score-Matrix = preference relation
n rji = 1 – rij, if not à normalize 
n Compute the maximal non-dominated elements

n Construct the strict preference relation
n Compute the non-dominance degree

n the degree to which the class i is dominated by no one of the 
remaining classes

n Output

State-of-the-art on aggregation for OVO

[Fernandez10] A. Fernández, M. Calderón, E. Barrenechea, H. Bustince, F. Herrera, Solving mult-class problems with linguistic
fuzzy rule based classification systems based on pairwise learning and preference relations, Fuzzy Sets and System 161:23
(2010) 3064-3080,
[Orlovsky78] S. A. Orlovsky, Decision-making with a fuzzy preference relation, Fuzzy Sets and Systems 1 (3) (1978) 155–167.
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State-of-the-art on aggregation for OVO

¨ Binary Tree of Classifiers (BTC)
¤ From Binary Tree of SVM [Fei06]
¤ Reduce the number of classifiers
¤ Idea: Some of the binary classifiers which discriminate 

between two classes
n Also can distinguish other classes at the same time

¤ Tree constructed recursively
n Similar to DDAG

n Each node: class list + classifier
n More than 1 class can be deleted in each node
n To avoid false assumptions: probability threshold for examples from 

other classes near the decision boundary

[Fei06] B. Fei and J. Liu. Binary tree of SVM: a new fast multiclass training and classification algorithm. IEEE
Transactions on Neural Networks, 17(3):696–704, 2006
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State-of-the-art on aggregation for OVO

¨ BTC for a six class problem
¤ Classes 3 and 5 are assigned to two leaf nodes

n Class 3 by reassignment (probability threshold)
n Class 5 by the decision function between class1 and 2
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State-of-the-art on aggregation for OVO

¨ Nesting One-vs-One (NEST) [Liu07,Liu08]
¤ Tries to tackle the unclassifiable produced by VOTE
¤ Use VOTE

n But if there are examples within the unclassifiable region
n Build a new OVO system only with the examples in the region in 

order to make them classifiable
n Repeat until no examples remain in the unclassifiable region

¤ The convergence is proved 
n No maximum nested OVOs parameter

[Liu07] Z. Liu, B. Hao and X. Yang. Nesting algorithm for multi-classification problems. Soft Computing, 11(4):383–389, 2007.
[Liu08] Z. Liu, B. Hao and E.C.C. Tsang. Nesting one-against-one algorithm based on SVMs for pattern classification. IEEE
Transactions on Neural Networks, 19(12):2044–2052, 2008.
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State-of-the-art on aggregation for OVO

¨ Wu, Lin and Weng Probability Estimates by 
Pairwise Coupling approach (PE)[Wu04]
¤ Obtains the posterior probabilities

n Starting from pairwise probabilities

¤ Predicts 
¤ Similar to PC

n But solving a different optimization
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State-of-the-art on aggregation for OVA

¨ Starting from the score-vector

¤ ri = confidence of classifier in favor of class i
n Respect to all other classes

¤ Usually more than 1 classifier predicts the positive class
n Tie-breaking techniques

34/81



State-of-the-art on aggregation for OVA

¨ Maximum confidence strategy (MAX)
¤ Predicts the class with the largest confidence

¨ Dynamically Ordered One-vs-All (DOO) [Hong08]
¤ It is not based on confidences
¤ Train a Naïve Bayes classifier

n Use its predictions to Dynamically execute each OVA
n Predict the first class giving a positive answer

¤ Ties avoided a priori by a Naïve Bayes classifier

[Hong08] J.-H. Hong, J.-K. Min, U.-K. Cho, and S.-B. Cho. Fingerprint classification using one-vs-all support
vector machines dynamically ordered with naïve bayes classifiers. Pattern Recognition, 41(2):662–671, 2008.
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Binarization strategies

¨ But…
¤ Should we do binarization?

n When it is not needed? (Ripper, C4.5, kNN…)
n There exist previous works showing their goodness 

[Fürnkranz02,Fürnkranz03,Rifkin04]

¤ Given that we want or have to use binarization…
n How we should do it?

n Some comparisons between OVO and OVA
n Only for SVM [Hsu02]

n No comparison for aggregation strategies

[Hsu02] C. W. Hsu, C. J. Lin, A comparison of methods for multiclass support vector machines, IEEE Transactions
Neural Networks 13 (2) (2002) 415–425.

36/81



Outline

1. Introduction
2. Binarization

¤ Decomposition strategies (One-vs-One, One-vs-All and Others)
¤ State-of-the-art on Aggregations

n One-vs-One
n One-vs-All

3. Experimental Study
¤ Experimental Framework
¤ Results and Statistical Analysis

4. Discussion: Lessons Learned and Future Work
5. Conclusions for OVO vs OVA
6. Novel Approaches for the One-vs-One Learning Scheme

¤ Dynamic OVO: Avoiding Non-competence
¤ Distance-based Relative Competence Weighting Approach (DRCW-OVO)

37/81

M. Galar, A.Fernández, E. Barrenechea, H. Bustince, F. Herrera, An Overview of Ensemble Methods for
Binary Classifiers in Multi-class Problems: Experimental Study on One-vs-One and One-vs-All
Schemes. Pattern Recognition 44:8 (2011) 1761-1776, doi: 10.1016/j.patcog.2011.01.017



Experimental Framework

¨ Different base learners
¤ Support Vector Machines (SVM)
¤ C4.5 Decision Tree
¤ Ripper Decision List
¤ k-Nearest Neighbors (kNN)
¤ Positive Definite Fuzzy Classifier (PDFC)
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Experimental Framework

¨ Performance measures
¤ Accuracy rate

n Can be confusing evaluating multi-class problems

¤ Cohen’s kappa
n Takes into account random hits due to number of instances
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Experimental Framework

¨ 19 real-world Data-sets
¨ 5 fold-cross validation
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Experimental Framework

¨ Algorithms parameters
¤ Default configuration
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Experimental Framework

¨ Confidence estimations
¤ SVM: Logistic model

n SVM for probability estimates
¤ C4.5: Purity of the predictor leaf

n Nº of instances correctly classified by the leaf / Total nº of instances in the leaf

¤ kNN: 
n where dl = distance between the input pattern and the lth neighbor 
n el = 1 if the neighbor l is from the class and 0 otherwise

¤ Ripper: Purity of the rule
n Nº of instances correctly classified by the rule / Total nº of instances in the rule

¤ PDFC: confidence = 1 is given for the predicted class
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Experimental Study

¨ Average accuracy and kappa results
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Experimental Study

¨ Average accuracy and kappa results
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Which is the most appropriate aggregation?

¨ OVO aggregations Analysis
¤ SVM: NEST and VOTE, but no statistical differences
¤ C4.5: Statistical differences

n WV, LVPC and PC the most robust
n NEST and DDAG the weakest

¤ 1NN: Statistical differences
n PC and PE the best à confidences in {0,1}

n In PDFC they also excel

n ND the worst à poor confidences, excessive ties
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Which is the most appropriate aggregation?

¨ OVO aggregations Analysis
¤ 3NN: No significant differences

n ND stands out

¤ Ripper: Statistical differences
n WV and LVPC vs. BTC and DDAG

¤ PDFC: No significant differences (low p-value in kappa)
n VOTE, PC and PE overall better performance
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Which is the most appropriate aggregation?

¨ OVA aggregations Analysis
¤ DOO performs better when the base classifiers 

accuracy is not better than the Naïve Bayes ones. 
¤ It helps selecting the most appropriate classifier to use 

dynamically
¤ In other cases, it can distort the results
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Should we do binarization? 
How should we do it?

¨ Representatives of OVO and OVA
¤ By the previous analysis

¤ Average results
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Should we do binarization? 
How should we do it?

¨ Rankings within each classifier
¤ In general, OVO is the most competitive

Accuracy Kappa
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Should we do binarization? 
How should we do it?

¨ Box plots for test results
¤ OVA reduce performance in kappa
¤ OVO is more compact (hence, robust)

51/81



Should we do binarization? 
How should we do it?

¨ Statistical analysis
¤ SVM and PDFC

n OVO outperforms OVA with significant differences

¤ C4.5, 1NN, 3NN and Ripper
n P-values returned by Iman-Davenport tests (* if rejected)

n Post-hoc test for C4.5 and Ripper
n kNN, no statistical differences, but also not worse results
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Should we do binarization? 
How should we do it?

¨ Statistical analysis
¤ C4.5

n WV for OVO outperforms the rest

¤ Ripper
n WV for OVO is the best

n No statistical differences with OVA
n But OVO differs statistically from Ripper while OVA do not
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Discussion

¨ Lessons learned
¤ Binarization is beneficial

n Also when the problem can be tackled without it

¤ The most robust aggregations for OVO
n WV, LVPC, PC and PE

¤ The most robust aggregations for OVA
n Not clear
n Need more attention, can be improved

¤ Too many approaches to deal with the unclassifiable 
region in OVO (NEST, BTC, DDAG)
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Discussion

¨ Lessons learned
¤ OVA problem

n Imbalanced data-sets
n Not against Rifkin’s findings

n But, this means that OVA are less robust
n Need more fine-tuned base classifiers

¤ Importance of confidence estimates of base classifiers
¤ Scalability

n Number of classes: OVO seems to work better
n Number of instances: OVO natures make it more adequate
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Discussion

¨ Future work
¤ Detection of non-competent examples
¤ Techniques for imbalanced data-sets
¤ Studies on scalability
¤ OVO as a decision making problem

n Suppose inaccurate or erroneous base classifiers

¤ New combinations for OVA
n Something more than a tie-breaking technique

¤ Data-complexity measures
n A priori knowledge extraction to select the proper mechanism
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Conclusions

¨ Goodness of using binarization
¤ Concretely, OVO approach

n WV, LVPC, PC and PE
n The aggregation is base learner dependant

¨ Low attention to OVA strategy
¤ Problems with imbalanced data

¨ Importance of confidence estimates
¨ Many work remind to be addressed
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Dynamic OVO: Avoiding Non-
competence

¨ Non-Competent Classifiers: 
¤ Those whose output is not relevant for the classification

of the query instance
¤ They have not been trained with instances of the real 

class of the example to be classified
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Dynamic OVO: Avoiding Non-
competence

¨ Non-Competent Classifiers: 
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Dynamic OVO: Avoiding Non-
competence

¨ Dynamic Classifier Selection:
¤ Classifiers specialized in different areas of the input

space
¤ Classifiers complement themselves
¤ The most competent one for the instance is selected:

n Instead of combining them all
n Asumming that several misses can be done (they are 

corrected)
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Dynamic OVO: Avoiding Non-
competence
¨ Avoding non-competence problem
¨ Adapting Dynamic Classifier Selection (DCS) to OVO

¤ Baseline classifiers competent over their pair of classes
¨ Search for a lower set of classes than those that

problably the instance belongs to.
¤ Remove those (probably) non-competent classifiers
¤ Avoid misclassifications

¨ Neighbourhood of the instance is considered[Woods97]

¤ Local precisions cannot be estimated
¤ Classes in the neighbourhood à reduced score matrix

[WOODS97] K. Woods, W. Philip Kegelmeyer, K. Bowyer. Combination of multiple classifiers using local accuracy
estimates, IEEE Transactions on Pattern Analysis and Machine Intelligence 19(4):405-410, 1997.
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Dynamic OVO: Avoiding Non-
competence
¨ DCS ALGORITHM FOR OVO 

STRATEGY
1. Compute the k nearest 

neighbors of the instance (k = 
3 · m)

2. Select the classes in the 
neighborhood (if it is unique 
k++)

3. Consider the subset of classes 
in the reduced-score matrix

¨ Any existing OVO aggregation 
can be used

¨ Difficult to misclassify instances
¨ k value is larger than the usual 

value for classification
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Dynamic OVO: Avoiding Non-
competence

¨ Classify	x,	whose	real	class	is	𝑐2

¨ 𝑅 𝑥 =

𝑐1 𝑐2
𝑐1 − 0,55
𝑐2 0,45 −

𝑐3 𝑐4 𝑐5
0,6 0,75 0,7
0,4 1 0,8

𝑐3 0,4 0,6
𝑐4 0,25 0,0
𝑐5 0,30 0,2

− 0,5 0,4
0,5 − 0,1
0,6 0,9 −
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Dynamic OVO: Avoiding Non-
competence
¨ Consider WV aggregation, c2ispredicted
¨ Noneof theclassifiersconsidering c1failed

¨ Non-competentclassifiersstronglyvotedforc2

¨ 𝑅 𝑥 =

𝑐1 𝑐2
𝑐1 − 0,55
𝑐2 0,45 −

𝑐3 𝑐4 𝑐5
0,6 0,75 0,7
0,4 1 0,8

𝑐3 0,4 0,6
𝑐4 0,25 0,0
𝑐5 0,30 0,2

− 0,5 0,4
0,5 − 0,1
0,6 0,9 −

𝑊𝑉
2,6
𝟐, 𝟔𝟓
1,9
0,85
2,1
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Dynamic OVO: Avoiding Non-
competence
¨ Applying DynamickNN

¤ Compute thekNN of x (k = 3 · 5 = 15)
¤ Subset of classes = {c1, c4, c5}
¤ Remove {c2, c3} fromthe score-matrix
¤ Apply WV to thereduced score-matrix

¨ 𝑅FGH(𝑥) =

𝑐1 𝑐2
𝑐1 − 0,55
𝑐2 0,45 −

𝑐3 𝑐4 𝑐5
0,6 0,75 0,7
0,4 1 0,8

𝑐3 0,4 0,6
𝑐4 0,25 0,0
𝑐5 0,30 0,2

− 0,5 0,4
0,5 − 0,1
0,6 0,9 −

𝑊𝑉
𝟏, 𝟒𝟓
−−
0,35
1,2
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Dynamic OVO: Avoiding Non-
competence

¨ Summary:
¤ We avoid some of the non-competent classifiers by 

DCS
¤ It is simple, yet powerful
¤ Positive synergy between Dynamic OVO and WV
¤ All the differences are due to the aggregations

n Tested with same score-matrices in all methods
n Significant differences only changing the aggregation
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¨ Non-Competent Classifiers: 
¤ Those whose output is not relevant for the classification

of the query instance
¤ They have not been trained with instances of the real 

class of the example to be classified
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¨ Non-Competent Classifiers: 
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Distance-based Relative Competence 
Weighting Approach
¨ Designed to address the non-competence classifier

problem
¨ It carries out a dynamic adaptation of the score-

matrix
¤ More competent classifiers should be those whose pair 

of classes are “nearer” to the query instance.
¤ Confidence degrees are weighted in accordance to the 

former distance.
¤ This distance is computed by using the standard kNN

approach
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Distance-based Relative Competence 
Weighting Approach
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With k = 1 a neighbor for each class is obtained, therefore it would use the m 
neighbours (1 per class). Next experimental example use k=5.

DRCW ALGORITHM FOR OVO STRATEGY



Distance-based Relative Competence 
Weighting Approach
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Distance-based Relative Competence 
Weighting Approach
¨ Distances to k nearest neighbors of each class (d) are 

computed: d= (0.8, 0.9, 0.6, 1.2, 1.6)

¨ A Weight-matrixW iscomputed to representallwij

¨ W 𝑥 =

𝑐1 𝑐2
𝑐1 − 0,56
𝑐2 0,44 −

𝑐3 𝑐4 𝑐5
0,36 0,69 0,80
0,31 0,64 0,76

𝑐3 0,64 0,69
𝑐4 0,31 0,36
𝑐5 0,20 0,24

− 0,80 0,88
0,5 − 0,64
0,6 0,36 −
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Distance-based Relative Competence 
Weighting Approach
¨ Apply theweight-matrixW to the score-matrixR

¨ WV isapplied to obtainthepredictedclass in DRCW-
OVO

¨ 𝑅M(𝑥) =

𝑐1 𝑐2
𝑐1 − 0,31
𝑐2 0,20 −

𝑐3 𝑐4 𝑐5
0,16 0,55 0,72
0,17 0,64 0,61

𝑐3 0,35 0,31
𝑐4 0,06 0,00
𝑐5 0,02 0,05

− 0,36 0,35
0,11 − 0,06
0,07 0,32 −

𝑊𝑉
𝟏, 𝟕𝟒
1,66
1,37
0,24
0,47
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Distance-based Relative Competence 
Weighting Approach
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¨ Experimental Analysis



¿Questions?

¨ Thank you for your attention!
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