

Alberto Fernández Mikel Galar Francisco Herrera State-of-the-art on One-vs-One, One-vs-All. Novel approaches.

Outline

- 1. Introduction
- 2. Binarization
 - Decomposition strategies (One-vs-One, One-vs-All and Others)
 - State-of-the-art on Aggregations
 - One-vs-One
 - One-vs-All
- 3. Experimental Study
 - Experimental Framework
 - Results and Statistical Analysis
- 4. Discussion: Lessons Learned and Future Work
- 5. Conclusions for OVO vs OVA
- 6. Novel Approaches for the One-vs-One Learning Scheme
 - Dynamic OVO: Avoiding Non-competence
 - Distance-based Relative Competence Weighting Approach (DRCW-OVO)
 - Difficult Classes Problem in OVO Strategy

Outline

1. Introduction

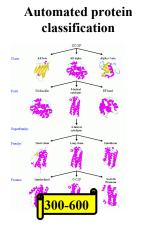
- 2. Binarization
 - Decomposition strategies (One-vs-One, One-vs-All and Others)
 - State-of-the-art on Aggregations
 - One-vs-One
 - One-vs-All
- 3. Experimental Study
 - Experimental Framework
 - Results and Statistical Analysis
- 4. Discussion: Lessons Learned and Future Work
- 5. Conclusions for OVO vs OVA
- 6. Novel Approaches for the One-vs-One Learning Scheme
 - Dynamic OVO: Avoiding Non-competence
 - Distance-based Relative Competence Weighting Approach (DRCW-OVO)

Introduction

Classification

- 2 class of classification problems:
 - Binary: medical diagnosis (yes / no)
 - Multicategory: Letter recognition (A, B, C...)
- Binary problems are usually easier
- Some classifiers do not support multiple classes
 - SVM, PDFC...

Phoneme recognition



Object recognition

)
0 🗉 0 👔 🖬 🖬 🖬	
🛯 🕹 🔍 🕹 🗉 🖉 💽	
N MIDDOD	
<mark>∼ 100 2</mark> 0 0 0 0 0 0	
	J

Una aplicación real en KAGGLE de Problema Multiclase

For this competition, we have provided a dataset with 93 features for more than 200,000 products. The objective is to build a predictive model which is able to distinguish between our main product categories. The winning models will be open sourced.

otto group

2

2

5

Δ

Una aplicación real en KAGGLE de Problema Multiclase

Submission Format

You must submit a csv file with the product id, all candidate class names, and a probability for each class. The order of the rows does not matter. The file must have a header and should look like the following:

```
id,Class_1,Class_2,Class_3,Class_4,Class_5,Class_6,Class_7,Class_8,Class_9
1,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0
2,0.0,0.2,0.3,0.3,0.0,0.0,0.1,0.1,0.0
...
etc.
```


Started: 3:56 pm, Tuesday 17 March 2015 UTC
 Ends: 11:59 pm, Monday 18 May 2015 UTC (62 total days)
 Points: this competition awards standard ranking points
 Tiers: this competition counts towards tiers

Una aplicación real en KAGGLE de Problema Multiclase

Evaluation

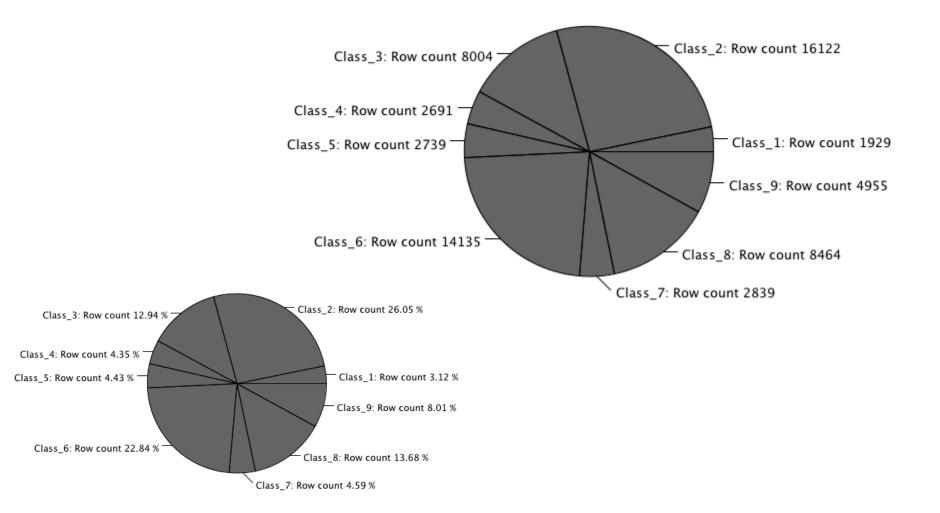
Submissions are evaluated using the multi-class logarithmic loss. Each product has been labeled with one true category. For each product, you must submit a set of predicted probabilities (one for every category). The formula is then,

$$logloss = -\frac{1}{N} \sum_{i=1}^{N} \sum_{j=1}^{M} y_{ij} \log(p_{ij}),$$

where N is the number of products in the test set, M is the number of class labels, log is the natural logarithm, y_{ij} is 1 if observation i is in class j and 0 otherwise, and p_{ij} is the predicted probability that observation i belongs to class j.

The submitted probabilities for a given product are not required to sum to one because they are rescaled prior to being scored (each row is divided by the row sum). In order to avoid the extremes of the log function, predicted probabilities are replaced with $max(min(p, 1 - 10^{-15}), 10^{-15})$.

Una aplicación real en KAGGLE de Problema Multiclase



Una aplicación real en KAGGLE de Problema Multiclase

\$10,000 • 2,296 teams

otto group

Otto Group Product Classification Challenge

Tue 17 Mar 2015

Enter/Merge by Mon 18 May 2015 (32 days to go)

Dashboard V Public Leaderboard - Otto Group Product Classification Challenge

This leaderboard is calculated on approximately 70% of the test data. The final results will be based on the other 30%, so the final standings may be different. See someone using multiple accour Let us kn

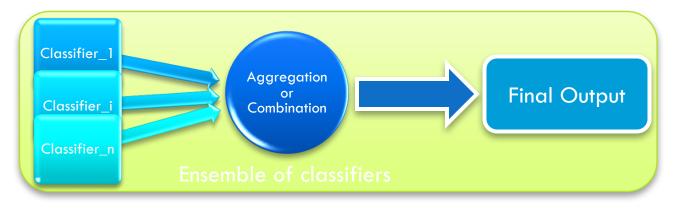
#	Δ1w	Team Name * in the money	Score 😮	Entries	Last Submission UTC (Best – Last Submissio
1		i dont know 🎿 *	0.39067	67	Thu, 16 Apr 2015 21:37:26
2	_	team 💵 *	0.40017	20	Thu, 16 Apr 2015 14:45:41
3	new	tks *	0.40110	1	Thu, 16 Apr 2015 16:54:01
4	↓1	IzuiT	0.40311	43	Thu, 16 Apr 2015 05:29:26
5	↓1	Hoang Duong	0.40382	32	Thu, 16 Apr 2015 05:44:21 (-8.8d)
6	↓1	Nicholas Guttenberg	0.40857	55	Thu, 16 Apr 2015 15:46:43 (-2.6d)

Outline

- 1. Introduction
- 2. Binarization
 - Decomposition strategies (One-vs-One, One-vs-All and Others)
 - State-of-the-art on Aggregations
 - One-vs-One
 - One-vs-All
- 3. Experimental Study
 - Experimental Framework
 - Results and Statistical Analysis
- 4. Discussion: Lessons Learned and Future Work
- 5. Conclusions for OVO vs OVA
- 6. Novel Approaches for the One-vs-One Learning Scheme
 - Dynamic OVO: Avoiding Non-competence
 - Distance-based Relative Competence Weighting Approach (DRCW-OVO)

Binarization

- Decomposition of the multi-class problem
 - Divide and conquer strategy
 - Multi-class \rightarrow Multiple easier to solve binary problems
 - For each binary problem
 - 1 binary classifier = base classifier
 - Problem
 - How we should make the decomposition?
 - How we should aggregate the outputs?

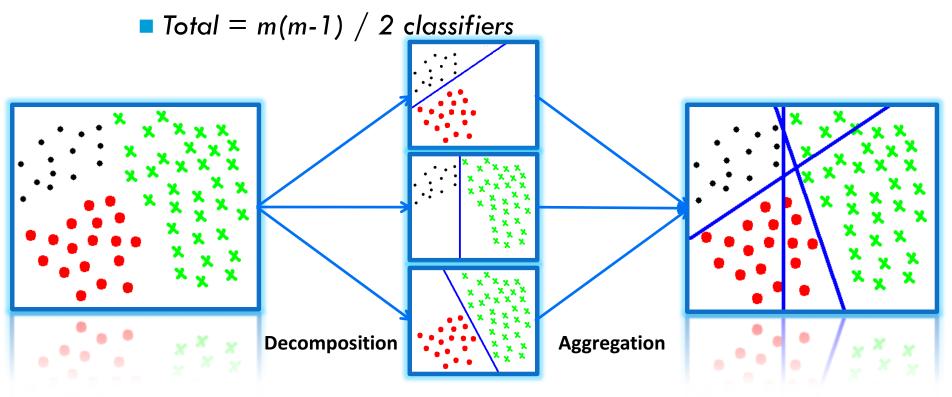


Decomposition Strategies

□ "One-vs-One" (OVO)

I binary problem for each pair of classes

Pairwise Learning, Round Robin, All-vs-All...



One-vs-One

Advantages

Smaller (number of instances)

- Simpler decision boundaries
 - Digit recognition problem by pairwise learning

linearly separable [Knerr90] (first proposal)

Parallelizable

••••

[Knerr90] S. Knerr, L. Personnaz, G. Dreyfus, Single-layer learning revisited: A stepwise procedure for building and training a neural network, in: F. Fogelman Soulie, J. Herault (eds.), Neurocomputing: Algorithms, Architectures and Applications, vol. F68 of NATO ASI Series, Springer-Verlag, 1990, pp. 41–50.

One-vs-One

Disadvantages

Higher testing times (more classifiers)

Non-competent examples [Fürnkranz06]

Many different aggregation proposals

Simplest: Voting strategy

- Each classifier votes for the predicted class
- Predicted = class with the largest n° of votes

$$R = \begin{pmatrix} - & r_{12} & \cdots & r_{1m} \\ r_{21} & - & \cdots & r_{2m} \\ \vdots & & & \vdots \\ r_{m1} & r_{m2} & \cdots & - \end{pmatrix}$$

[Fürnkranz06] J. Fürnkranz, E. Hüllermeier, S. Vanderlooy, Binary decomposition methods for multipartite ranking, in: W. L. Buntine, M. Grobelnik, D. Mladenic, J. Shawe-Taylor (eds.), Machine Learning and Knowledge Discovery in Databases, vol. 5781(1) of LNCS, Springer, 2006, pp. 359–374.

One-vs-One

Related works

- Round Robin Ripper (R3) [Fürnkranz02]
- Fuzzy R3 (FR3) [Huhn09]
- Probability estimates by Pairwise Coupling [Wu04]

[Fürnkranz03]

- Comparison between OVO, Boosting and Bagging
- Many aggregation proposals
 - There is not a proper comparison between them

[Fürnkranz02] J. Fürnkranz, Round robin classification, Journal of Machine Learning Research 2 (2002) 721–747.

[Huhn09] J. C. Huhn, E. Hüllermeier, FR3: A fuzzy rule learner for inducing reliable classifiers, IEEE Transactions on Fuzzy Systems 17 (1) (2009) 138–149.

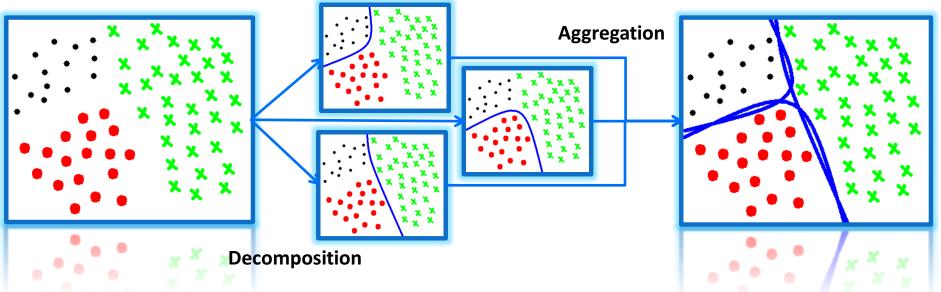
[Wu04] T. F. Wu, C. J. Lin, R. C. Weng, Probability estimates for multi-class classification by pairwise coupling, Journal of Machine Learning Research 5 (2004) 975–1005.

[Fürnkranz03] J. Fürnkranz, Round robin ensembles, Intelligent Data Analysis 7 (5) (2003) 385–403.

Decomposition Strategies

□ "One-vs-All" (OVA)

- 1 binary problem for each class
 - All instances in each problem
 - Positive class: instances from the class considered
 - Negative class: instances from all other classes
 - Total = m classifiers



One-vs-All

Advantages

- Less n° of classifiers
- All examples are "competent"
- Disadvantages

Less studied in the literature

- Iow n° of aggregations
 - Simplest: Maximum confidence rule (max(r_{ii}))

 $R = (r_1, r_2, \ldots, r_i, \ldots, r_m)$

- More complex problems
- Imbalance training sets

One-vs-All

Related Works

Rifkin and Klatau [Rifkin04]

Critical with all previous literature about OVO

 OVA classifiers are as accurate as OVO when the base classifier are fine-tuned (about SVM)

□ In general

Previous works proved goodness of OVO

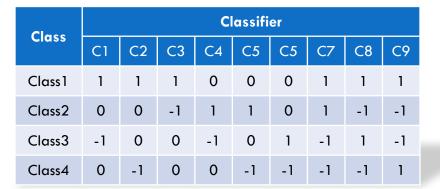
Ripper and C4.5, cannot be tuned

[Rifkin04] R. Rifkin, A. Klautau, In defense of one-vs-all classification, Journal of Machine Learning Research 5 (2004) 101–141.

Decomposition Strategies

Other approaches

- ECOC (Error Correcting Output Code) [Allwein00]
 - Unify (generalize) OVO and OVA approach
 - Code-Matrix representing the decomposition
 - The outputs forms a code-word
 - An ECOC is used to decode the code-word
 - The class is given by the decodification



[Allwein00] E. L. Allwein, R. E. Schapire, Y. Singer, Reducing multiclass to binary: A unifying approach for margin classifiers, Journal of Machine Learning Research 1 (2000) 113–141.

Decomposition Strategies

- Other approaches
 - Hierarchical approaches
 - Distinguish groups of classes in each nodes
 - Detailed review of decomposition strategies in [Lorena09]
 - Only an enumeration of methods
 - Low importance to the aggregation step

[Lorena09] A. C. Lorena, A. C. Carvalho, J. M. Gama, A review on the combination of binary classifiers in multiclass problems, Artificial Intelligence Review 30 (1-4) (2008) 19–37.

Combination of the outputs

Aggregation phase

- The way in which the outputs of the base classifiers are combined to obtain the final output.
- Key-factor in OVO and OVA ensembles
- Ideally, voting and max confidence works
 - In real problems
 - Contradictions between base classifiers
 - Ties
 - Base classifiers are not 100% accurate
 - •••

Outline

- 1. Introduction
- 2. Binarization
 - Decomposition strategies (One-vs-One, One-vs-All and Others)
 - State-of-the-art on Aggregations
 - One-vs-One
 - One-vs-All
- 3. Experimental Study
 - Experimental Framework
 - Results and Statistical Analysis
- 4. Discussion: Lessons Learned and Future Work
- 5. Conclusions for OVO vs OVA
- 6. Novel Approaches for the One-vs-One Learning Scheme
 - Dynamic OVO: Avoiding Non-competence
 - Distance-based Relative Competence Weighting Approach (DRCW-OVO)

Starting from the score-matrix

$$R = \begin{pmatrix} - & r_{12} & \cdots & r_{1m} \\ r_{21} & - & \cdots & r_{2m} \\ \vdots & & \vdots \\ r_{m1} & r_{m2} & \cdots & - \end{pmatrix}$$

r_{ii} = confidence of classifier in favor of class i

- $\mathbf{r}_{ii} = \text{confidence of classifier in favor of class j}$
 - Usually: r_{ii} = 1 r_{ii} (required for probability estimates)

- Voting strategy (VOTE) [Friedman96]
 - Each classifier gives a vote for the predicted class
 - The class with the largest number of votes is predicted

$$Class = \arg \max_{i=1,\dots,m} \sum_{1 \le j \ne i \le m} s_{ij}$$

• where s_{ij} is 1 if $r_{ij} > r_{ji}$ and 0 otherwise.

Weighted voting strategy (WV)
 WV = VOTE but weight = confidence

$$Class = \arg \max_{i=1,\dots,m} \sum_{1 \le j \ne i \le m} r_{ij}$$

[Friedman96] J. H. Friedman, Another approach to polychotomous classification, Tech. rep., Department of Statistics, Stanford University (1996).

- Classification by Pairwise Coupling (PC)[Hastie98]
 - Estimates the joint probability for all classes
 - Starting from the pairwise class probabilities
 - r_{ij} = Prob(Class_i | Class_i or Class_i)
 - Find the best approximation $\widehat{\mathbf{p}} = (\widehat{p}_1, \dots, \widehat{p}_m)$
 - **Predicts:** $Class = arg \max_{i=1,...,m} \widehat{p}_i$
 - Algorithm: Minimization of Kullack-Leibler (KL) distance

$$l(\mathbf{p}) = \sum_{1 \le j \ne i \le m} n_{ij} r_{ij} \log \frac{r_{ij}}{\mu_{ij}} = \sum_{i < j} n_{ij} \left(r_{ij} \log \frac{r_{ij}}{\mu_{ij}} + (1 - r_{ij}) \log \frac{1 - r_{ij}}{1 - \mu_{ij}} \right)$$

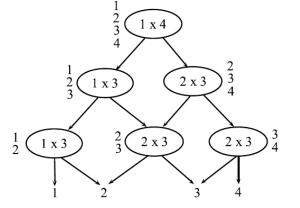
• where $\mu_{ij} = p_i/(p_i + p_j)$, $r_{ji} = 1 - r_{ij}$ and n_{ij} is the number of examples of classes i and j

Decision Directed Acyclic Graph (DDAG) [Platt00]

Constructs a rooted binary acyclic graph

- Each node is associated to a list of classes and a binary classifier
- In each level a classifier discriminates between two classes
 - The class which is not predicted is removed
- The last class remaining on the list is the final output class.

[Platt00] J. C. Platt, N. Cristianini and J. Shawe-Taylor, Large Margin DAGs for Multiclass Classification, Proc. Neural Information Processing Systems (NIPS'99), S.A. Solla, T.K. Leen and K.-R. Müller (eds.), (2000) 547-553.



27/81

- Learning Valued Preference for Classification (LVPC)
 - Score-matrix = fuzzy preference relation

[Hüllermeier08,H uhn09]

- Decomposition in 3 different relations
 - Strict preference $P_{ij} = r_{ij} min\{r_{ij}, r_{ji}\}$ $P_{ji} = r_{ji} - min\{r_{ij}, r_{ji}\}$ Conflict $C_{ij} = min\{r_{ij}, r_{ji}\}$ Ignorance $I_{ij} = 1 - max\{r_{ij}, r_{ji}\}$
- Decision rule based on voting from the three relations

$$Class = \arg\max_{i=1,...,m} \sum_{1 \le j \ne i \le m} P_{ij} + \frac{1}{2}C_{ij} + \frac{N_i}{N_i + N_j} I_{ij}$$

where Ni is the number of examples of class i in training

[Hüllermeier08] E. Hüllermeier and K. Brinker. Learning valued preference structures for solving classification problems. Fuzzy Sets and Systems, 159(18):2337–2352, 2008.

- Non-Dominance Criterion (ND) [Fernandez09]
 - Decision making and preference modeling [Orlovsky78]
 - Score-Matrix = preference relation
 - **r**_{ii} = 1 r_{ii}, if not \rightarrow normalize \bar{r}_{ij}

$$r_j = \frac{r_{ij}}{r_{ij} + r_{ji}}$$

Compute the maximal non-dominated elements

Construct the strict preference relation $r'_{ij} = \begin{cases} \bar{r}_{ij} - \bar{r}_{ji}, & \text{when } \bar{r}_{ij} > \bar{r}_{ji} \\ 0, & \text{otherwise.} \end{cases}$

Compute the non-dominance degree $ND_i = 1 - \sup_{i \in C} [r'_{ji}]$

• the degree to which the class i is dominated by no one of the remaining classes

• Output $Class = arg \max_{i=1,...,m} \{ND_i\}$

[Fernandez10] A. Fernández, M. Calderón, E. Barrenechea, H. Bustince, F. Herrera, Solving mult-class problems with linguistic fuzzy rule based classification systems based on pairwise learning and preference relations, Fuzzy Sets and System 161:23 (2010) 3064-3080,

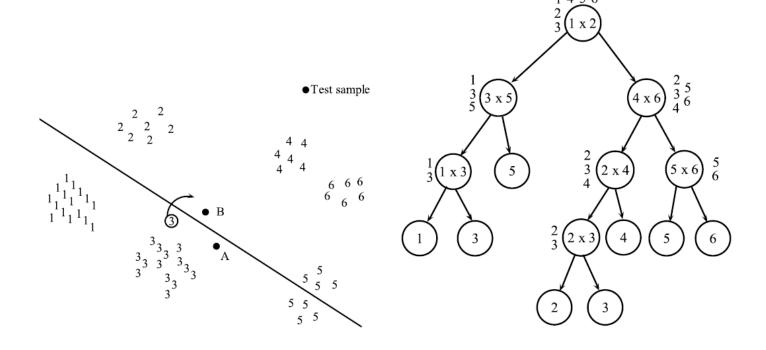
[Orlovsky78] S. A. Orlovsky, Decision-making with a fuzzy preference relation, Fuzzy Sets and Systems 1 (3) (1978) 155–167.

- Binary Tree of Classifiers (BTC)
 - From Binary Tree of SVM [Fei06]
 - Reduce the number of classifiers
 - Idea: Some of the binary classifiers which discriminate between two classes
 - Also can distinguish other classes at the same time
 - Tree constructed recursively
 - Similar to DDAG
 - Each node: class list + classifier
 - More than 1 class can be deleted in each node
 - To avoid false assumptions: probability threshold for examples from other classes near the decision boundary

[FeiO6] B. Fei and J. Liu. Binary tree of SVM: a new fast multiclass training and classification algorithm. IEEE Transactions on Neural Networks, 17(3):696–704, 2006

□ BTC for a six class problem

- Classes 3 and 5 are assigned to two leaf nodes
 - Class 3 by reassignment (probability threshold)
 - Class 5 by the decision function between class1 and 2



- Nesting One-vs-One (NEST) [Liu07,Liu08]
 - Tries to tackle the unclassifiable produced by VOTE
 - Use VOTE
 - But if there are examples within the unclassifiable region
 - Build a new OVO system only with the examples in the region in order to make them classifiable
 - Repeat until no examples remain in the unclassifiable region
 - The convergence is proved
 - No maximum nested OVOs parameter

[Liu07] Z. Liu, B. Hao and X. Yang. Nesting algorithm for multi-classification problems. Soft Computing, 11(4):383–389, 2007. [Liu08] Z. Liu, B. Hao and E.C.C. Tsang. Nesting one-against-one algorithm based on SVMs for pattern classification. IEEE Transactions on Neural Networks, 19(12):2044–2052, 2008.

- Wu, Lin and Weng Probability Estimates by Pairwise Coupling approach (PE)[Wu04]
 - Obtains the posterior probabilities
 - Starting from pairwise probabilities

D Predicts
$$Class = arg \max_{i=1,...,m} \widehat{p}_i$$

- Similar to PC
 - But solving a different optimization

$$\min_{\mathbf{p}} \sum_{i=1}^{m} \sum_{1 \le j \ne i \le m} (r_{ji}p_i - r_{ij}p_j)^2 \quad \text{subject to } \sum_{i=1}^{k} p_i = 1, p_i \ge 0, \forall i.$$

Outline

- 1. Introduction
- 2. Binarization
 - Decomposition strategies (One-vs-One, One-vs-All and Others)
 - State-of-the-art on Aggregations
 - One-vs-One
 - One-vs-All
- 3. Experimental Study
 - Experimental Framework
 - Results and Statistical Analysis
- 4. Discussion: Lessons Learned and Future Work
- 5. Conclusions for OVO vs OVA
- 6. Novel Approaches for the One-vs-One Learning Scheme
 - Dynamic OVO: Avoiding Non-competence
 - Distance-based Relative Competence Weighting Approach (DRCW-OVO)

Starting from the score-vector

$$R = (r_1, r_2, \ldots, r_i, \ldots, r_m)$$

- **r**_i = confidence of classifier in favor of class i
 - Respect to all other classes
- Usually more than 1 classifier predicts the positive class
 Tie-breaking techniques

- Maximum confidence strategy (MAX)
 - **D** Predicts the class with the largest confidence $Class = arg \max_{i=1,...,m} r_i$
- Dynamically Ordered One-vs-All (DOO) [Hong08]
 - It is not based on confidences
 - Train a Naïve Bayes classifier
 - Use its predictions to Dynamically execute each OVA
 - Predict the first class giving a positive answer
 - Ties avoided a priori by a Naïve Bayes classifier

[Hong08] J.-H. Hong, J.-K. Min, U.-K. Cho, and S.-B. Cho. Fingerprint classification using one-vs-all support vector machines dynamically ordered with naïve bayes classifiers. Pattern Recognition, 41(2):662–671, 2008.

Binarization strategies

But...

Should we do binarization?

When it is not needed? (Ripper, C4.5, kNN...)

There exist previous works showing their goodness [Fürnkranz02,Fürnkranz03,Rifkin04]

Given that we want or have to use binarization...

- How we should do it?
 - Some comparisons between OVO and OVA
 - Only for SVM [Hsu02]
 - No comparison for aggregation strategies

[Hsu02] C. W. Hsu, C. J. Lin, A comparison of methods for multiclass support vector machines, IEEE Transactions Neural Networks 13 (2) (2002) 415–425.

Outline

- 1. Introduction
- 2. **Binarization**
 - Decomposition strategies (One-vs-One, One-vs-All and Others)
 - State-of-the-art on Aggregations
 - One-vs-One
 - One-vs-All
- 3. Experimental Study
 - Experimental Framework
 - Results and Statistical Analysis
- 4. Discussion: Lessons Learned and Future Work
- 5. Conclusions for OVO vs OVA
- 6. Novel Approaches for the One-vs-One Learning Scheme
 - Dynamic OVO: Avoiding Non-competence
 - Distance-based Relative Competence Weighting Approach (DRCW-OVO)

M. Galar, A.Fernández, E. Barrenechea, H. Bustince, F. Herrera, An Overview of Ensemble Methods for Binary Classifiers in Multi-class Problems: Experimental Study on One-vs-One and One-vs-All Schemes. Pattern Recognition 44:8 (2011) 1761-1776, doi: 10.1016/j.patcog.2011.01.017

- Different base learners
 - Support Vector Machines (SVM)
 - C4.5 Decision Tree
 - Ripper Decision List
 - k-Nearest Neighbors (kNN)
 - Positive Definite Fuzzy Classifier (PDFC)

- Performance measures
 - Accuracy rate
 - Can be confusing evaluating multi-class problems
 - Cohen's kappa

Takes into account random hits due to number of instances

Correct Class	Predicted Class							
	C_1	C_2		C_m	Total			
C_1	h_{11}	h_{12}		h_{1m}	T_{r1}			
C_2	h_{21}	h_{22}		h_{2m}	T_{r1}			
:			·		÷			
C_m	h_{m1}	h_{m2}		h_{mm}	T_{rm}			
Total	T_{c1}	T_{c2}		T_{cm}	T_{r1}			

$$kappa = \frac{n \sum_{i=1}^{m} h_{ii} - \sum_{i=1}^{m} T_{ri} T_{ci}}{n^2 - \sum_{i=1}^{m} T_{ri} T_{ci}}$$

19 real-world Data-sets

□ 5 fold-cross validation

Data-set	#Ex.	#Atts.	#Num.	#Nom.	#Cl.
Car	1728	6	6	0	4
Lymphography	148	18	3	15	4
Vehicle	846	18	18	0	4
Cleveland	297	13	13	0	5
Nursery	1296	8	0	8	5
Page-blocks	548	10	10	0	5
Autos	159	25	15	10	6
Dermatology	366	33	1	32	6
Flare	1389	10	0	10	6
Glass	214	9	9	0	6
Satimage	643	36	36	0	7
Segment	2310	19	19	0	7
Shuttle	2175	9	9	0	7
Zoo	101	16	0	16	7
Ecoli	336	7	7	0	8
Led7digit	500	7	0	7	10
Penbased	1099	16	16	0	10
Yeast	1484	8	8	0	10
Vowel	990	13	13	0	11

Algorithms parameters

Default configuration

Algorithm	Parameters
SVM	C = 1.0
	Tolerance Parameter $= 0.001$
	Epsilon = 1.0E-12
	Kernel Type = Polynomial
	Polynomial Degree $= 1$
	Fit Logistic Models $=$ True
C4.5	Prune = True
	Confidence level $= 0.25$
	Minimum number of item-sets per leaf $= 2$
1NN	k = 1
	Distance metric = Heterogeneous Value Difference Metric $(HVDM)$
3NN	k = 3
	Distance metric = Heterogeneous Value Difference Metric $(HVDM)$
Ripper	Size of growing subset $= 66\%$
	Repetitions of the optimization stage $= 2$
PDFC	C = 100.0
	Tolerance Parameter $= 0.001$
	Epsilon = 1.0E-12
	Kernel Type = Polynomial
	Polynomial Degree $= 1$
	PDRF Type = Gaussian

Confidence estimations

- SVM: Logistic model
 - SVM for probability estimates
- C4.5: Purity of the predictor leaf

N° of instances correctly classified by the leaf / Total n° of instances in the leaf

D kNN: Confidence =
$$\frac{\sum_{l=1}^{k} \frac{e}{d}}{\sum_{l=1}^{k} \frac{1}{d}}$$

- where d_l = distance between the input pattern and the l^{th} neighbor
- $e_l = 1$ if the neighbor *l* is from the class and 0 otherwise

Ripper: Purity of the rule

N° of instances correctly classified by the rule / Total n° of instances in the rule

PDFC: confidence = 1 is given for the predicted class

Outline

- 1. Introduction
- 2. **Binarization**
 - Decomposition strategies (One-vs-One, One-vs-All and Others)
 - State-of-the-art on Aggregations
 - One-vs-One
 - One-vs-All
- 3. Experimental Study
 - Experimental Framework
 - Results and Statistical Analysis
- 4. Discussion: Lessons Learned and Future Work
- 5. Conclusions for OVO vs OVA
- 6. Novel Approaches for the One-vs-One Learning Scheme
 - Dynamic OVO: Avoiding Non-competence
 - Distance-based Relative Competence Weighting Approach (DRCW-OVO)
 - Difficult Classes Problem in OVO Strategy

M. Galar, A.Fernández, E. Barrenechea, H. Bustince, F. Herrera, An Overview of Ensemble Methods for Binary Classifiers in Multi-class Problems: Experimental Study on One-vs-One and One-vs-All Schemes. Pattern Recognition 44:8 (2011) 1761-1776, <u>doi: 10.1016/j.patcog.2011.01.017</u>

Experimental Study

Average accuracy and kappa results

Mathad	Aggregation	SVM	[C4.5		1NN	
Method	Aggregation	Acctst	Avg. Rank	Acc_{tst}	Avg. Rank	Acc_{tst}	Avg. Rank
Base	-	-	-	80.51 ± 3.85	-	81.24 ± 2.98	-
	VOTE	81.14 ± 3.22	4.37(1)	81.57 ± 3.29	4.63(4)	82.06 ± 3.38	3.82(3)
	WV	81.05 ± 2.92	5.08(6)	81.59 ± 3.28	3.97(2)	-	-
	DDAG	81.01 ± 3.28	5.39(8)	81.02 ± 3.56	6.21(9)	81.86 ± 3.31	4.32(5)
	PC	81.08 ± 2.89	5.29(7)	81.49 ± 3.32	4.34(3)	82.26 ± 3.33	3.21(2)
OVO	LVPC	81.14 ± 3.11	4.50(3)	81.57 ± 3.28	3.87(1)	-	-
	ND	81.01 ± 3.15	4.92(5)	81.12 ± 3.24	5.58(6)	81.48 ± 3.51	4.97(7)
	BTC	80.82 ± 3.24	6.18(9)	81.22 ± 2.87	5.61(7)	82.21 ± 3.12	3.89(4)
	NEST	81.14 ± 3.32	4.47(2)	81.20 ± 3.47	5.74(8)	81.68 ± 3.47	4.68(6)
	PE	81.03 ± 3.35	4.79(4)	81.42 ± 3.22	5.05(5)	82.30 ± 3.11	3.11(1)
OVA	MAX	78.66 ± 3.00	1.53(2)	78.01 ± 4.19	1.84(2)	81.18 ± 4.51	1.63(2)
OVA	DOO	78.75 ± 3.15	1.47(1)	78.78 ± 4.36	1.16(1)	81.77 ± 4.45	1.37(1)
Mathad	Aggregation	SVM	1	C4.5	6	1NN	
Method	Aggregation	$Kappa_{tst}$	Avg. Rank	$Kappa_{tst}$	Avg. Rank	$Kappa_{tst}$	Avg. Rank
Base	-	-	-	$.7203 \pm .0554$	-	.7369 ± .0475	-
	VOTE	$.7233 \pm .0548$	4.82(2)	$.7331 \pm .0490$	5.16(5)	.7419 ± .0535	3.84(3)
	WV	$.7229 \pm .0506$	5.05(6)	$.7348 \pm .0485$	3.76(1)	-	-
	DDAG	$.7230 \pm .0555$	5.11(7)	$.7304 \pm .0535$	5.92(8)	$.7402 \pm .0522$	3.89(4)
	PC	$.7234 \pm .0520$	5.18(8)	$.7341 \pm .0493$	4.13(3)	$.7449 \pm .0525$	3.00(2)
OVO	LVPC	$.7211 \pm .0531$	5.03(5)	$.7341 \pm .0488$	4.03(2)	-	-
	ND	$.7225 \pm .0533$	4.82(2)	$.7286 \pm .0489$	5.53(7)	$.7340 \pm .0556$	5.37(7)
	BTC	$.7204 \pm .0551$	6.05(9)	$.7297 \pm .0428$	5.42(6)	$.7438 \pm .0498$	4.29(5)
	NEST	$.7243 \pm .0559$	4.03(1)	$.7291 \pm .0514$	6.34(9)	$.7366 \pm .0547$	4.79(6)
	PE	$.7228 \pm .0537$	4.92(4)	$.7330 \pm .0480$	4.71(4)	$.7453 \pm .0497$	2.82(1)
	MAX	$.6868 \pm .0553$	1.55(2)	$.6826 \pm .0629$	1.89(2)	$.7298 \pm .0705$	1.63(2)
OVA	DOO	$.6868 \pm .0565$		$.6938 \pm .0649$		$.7368 \pm .0701$	1.37 (1)

Experimental Study

Average accuracy and kappa results

Mathad	Aggregation	3NN	-	Rippe		PDFC		
Method	Aggregation	Acc _{tst}	Avg. Rank	Acc_{tst}	Avg. Rank	Acc_{tst}	Avg. Rank	
Base	-	81.54 ± 2.65	-	76.52 ± 4.00	-	-	-	
	VOTE	83.00 ± 2.92	5.05(6)	80.57 ± 3.17	3.89(3)	84.33 ± 3.10	3.37(2)	
	WV	83.11 ± 2.87	4.47(3)	80.54 ± 3.03	3.87(2)	-	-	
	DDAG	82.73 ± 2.83	5.87(8)	77.62 ± 3.61	7.08(9)	84.05 ± 3.00	3.71(3)	
	PC	83.00 ± 2.96	5.11(7)	80.33 ± 3.30	4.87(5)	84.12 ± 3.05	3.29(1)	
OVO	LVPC	83.07 ± 2.79	4.61(4)	80.58 ± 3.16	3.68(1)	-	-	
	ND	83.07 ± 2.93	4.29(1)	79.38 ± 3.27	5.29(7)	84.05 ± 2.96	4.68(6)	
	BTC	82.99 ± 2.98	5.00(5)	79.19 ± 3.07	6.39(8)	84.24 ± 3.01	4.29(5)	
	NEST	82.67 ± 2.94	6.16(9)	80.01 ± 3.50	5.08(6)	83.88 ± 3.02	4.89(7)	
	PE	83.11 ± 2.94	4.45(2)	80.07 ± 3.08	4.84(4)	84.06 ± 3.04	3.76(4)	
OVA	MAX	82.75 ± 4.29	1.58(2)	78.30 ± 4.94	1.71(2)	83.59 ± 3.12	1.39(1)	
OVA	DOO	82.76 ± 4.38	1.42(1)	79.12 ± 4.67	1.29(1)	83.01 ± 3.10	1.61(2)	
Method	Aggregation	3NN		Rippe		PDFC	C	
	Aggregation	$\kappa_{appa_{tst}}$	Avg. Rank		Avg. Rank	$Kappa_{tst}$	Avg. Rank	
Base	-	.7335 ± .0452	-	$.6799 \pm .0554$	-	-	-	
	VOTE	$.7507 \pm .0500$	5.03(6)	$.7250 \pm .0475$	4.26(3)	$.7677 \pm .0538$	3.63(2)	
	WV	.7519 ± .0487	4.71(3)	$.7249 \pm .0455$	3.68(1)	-	-	
	DDAG	$.7479 \pm .0487$	5.87(8)	$.6957 \pm .0489$	6.42(8)	$.7659 \pm .0518$	3.97(5)	
	PC	.7505 ± .0505	4.89(5)	$.7227 \pm .0483$	4.61(5)	$.7670 \pm .0529$	3.11(1)	
OVO	LVPC	$.7496 \pm .0475$	5.18(7)	$.7246 \pm .0469$	4.00(2)	-	-	
	ND	$.7524 \pm .0500$	4.03(1)	$.7098 \pm .0479$	5.92(7)	$.7625 \pm .0524$	5.32(7)	
	BTC	.7519 ± .0514	4.87(4)	$.7087 \pm .0476$	6.58(9)	$.7668 \pm .0527$	3.79(3)	
	NEST	$.7461 \pm .0505$	6.24(9)	$.7195 \pm .0496$	4.97(6)	$.7641 \pm .0514$	4.37(6)	
					4 88 (4)	FORO L OFOI	0.00 (4)	
	PE	$.7526 \pm .0499$	4.18(2)	.7193 ± .0457	4.55(4)	$.7653 \pm .0524$	3.82(4)	
OVA	PE MAX DOO	$.7526 \pm .0499$ $.7481 \pm .0695$ $.7473 \pm .0710$	$\frac{4.18(2)}{1.58(2)}$	$.7193 \pm .0457$ $.6896 \pm .0743$ $.7004 \pm .0716$	1.79(2)	$.7653 \pm .0524$ $.7556 \pm .0589$ $.7478 \pm .0587$	$\begin{array}{r} 3.82 (4) \\ \hline 1.37 (1) \\ 1.63 (2) \end{array}$	

Which is the most appropriate aggregation?

- OVO aggregations Analysis
 - SVM: NEST and VOTE, but no statistical differences
 - C4.5: Statistical differences
 - WV, LVPC and PC the most robust
 - NEST and DDAG the weakest
 - 1NN: Statistical differences
 - PC and PE the best \rightarrow confidences in {0,1}
 - In PDFC they also excel
 - **ND** the worst \rightarrow poor confidences, excessive ties

Which is the most appropriate aggregation?

- OVO aggregations Analysis
 - 3NN: No significant differences
 - ND stands out
 - Ripper: Statistical differences
 - WV and LVPC vs. BTC and DDAG
 - PDFC: No significant differences (low p-value in kappa)
 - VOTE, PC and PE overall better performance

Which is the most appropriate aggregation?

OVA aggregations Analysis

- DOO performs better when the base classifiers accuracy is not better than the Naïve Bayes ones.
- It helps selecting the most appropriate classifier to use dynamically

In other cases, it can distort the results

Base Classifier	Measure	R^+	R^-	Hypothesis ($\alpha = 0.05$)	p-value
SVM	Accuracy Kappa	82 86	$\frac{108}{104}$	Not Rejected Not Rejected	$\begin{array}{c} 0.53213 \\ 0.75637 \end{array}$
C4.5	Accuracy Kappa	$ 14 \\ 11.5 $	$176 \\ 178.5$	Rejected for DOO Rejected for DOO	$\begin{array}{c} 0.00179 \\ 0.00118 \end{array}$
1NN	Accuracy Kappa	55 55	$135 \\ 135$	Not Rejected Not Rejected	$0.09097 \\ 0.09097$
3NN	Accuracy Kappa	75 76	$ 115 \\ 114 $	Not Rejected Not Rejected	$0.73532 \\ 0.86577$
Ripper	Accuracy Kappa	$ 44.5 \\ 42 $	$145.5 \\ 148$	Rejected for DOO Rejected for DOO	$0.04286 \\ 0.03294$
PDFC	Accuracy Kappa	$130.5 \\ 138$	$59.5 \\ 52$	Rejected for MAX Rejected for MAX	$0.0464 \\ 0.02799$

Representatives of OVO and OVA

By the previous analysis

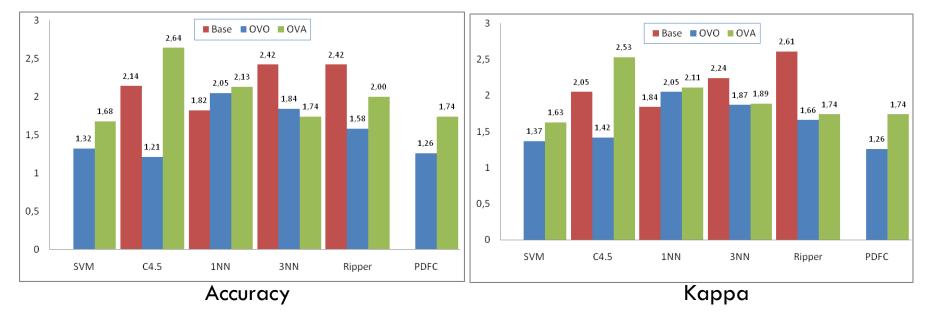
		SVM	C4.5	$1\mathrm{NN}$	3NN	Ripper	PDFC
-	OVO	$NEST_{ovo}$	WV_{ovo}	PE_{ovo}	ND_{ovo}	WV_{ovo}	PC_{ovo}
	OVA	DOO_{ova}	DOO_{ova}	DOO_{ova}	DOO_{ova}	DOO_{ova}	MAX_{ova}

Average results

Base	Aggregation	Accur	acy	Kappa	a
Classifier	Aggregation	Test	Avg. Rank	Test	Avg.Rank
SVM	NEST _{ovo}	81.14 ± 3.32	1.37~(1)	$.7243 \pm .0559$	1.32~(1)
5 1 11	DOO_{ova}	78.75 ± 3.15	1.63(2)	$.6868 \pm .0565$	1.68(2)
	C45	80.51 ± 3.85	2.05(2)	$.7203 \pm .0554$	2.14(2)
C4.5	WVovo	81.59 ± 3.28	1.42~(1)	$.7348\pm.0485$	1.21~(1)
	DOO_{ova}	78.78 ± 4.36	2.53(3)	$.6938 \pm .0649$	2.64(3)
	1NN	81.24 ± 2.98	1.84(1)	$.7369 \pm .0475$	1.82(1)
1NN	PE_{ovo}	82.30 ± 3.11	2.05(2)	$.7453 \pm .0497$	2.05(2)
	DOO_{ova}	81.77 ± 4.45	2.11(3)	$.7368 \pm .0701$	2.13(3)
	3NN	81.54 ± 2.65	2.24(3)	$.7335 \pm .0452$	2.42(3)
3NN	ND_{ovo}	83.07 ± 2.93	1.87(1)	$.7524 \pm .0500$	1.84(2)
	DOO_{ova}	82.76 ± 4.38	1.89(2)	$.7473 \pm .0710$	1.74(1)
	Ripper	76.52 ± 4.00	2.61(3)	$.6799 \pm .0554$	2.42(3)
Ripper	WVovo	80.54 ± 3.03	1.66(1)	$.7249\pm.0455$	1.58(1)
	DOO_{ova}	79.12 ± 4.67	1.74(2)	$.7004 \pm .0716$	2.00(2)
PDFC	PC_{ovo}	84.12 ± 3.05	1.26(1)	$.7670\pm.0529$	1.26(1)
I DFC	MAX_{ova}	83.59 ± 3.12	1.74(2)	$.7556 \pm .0589$	1.74(2)

Rankings within each classifier

In general, OVO is the most competitive

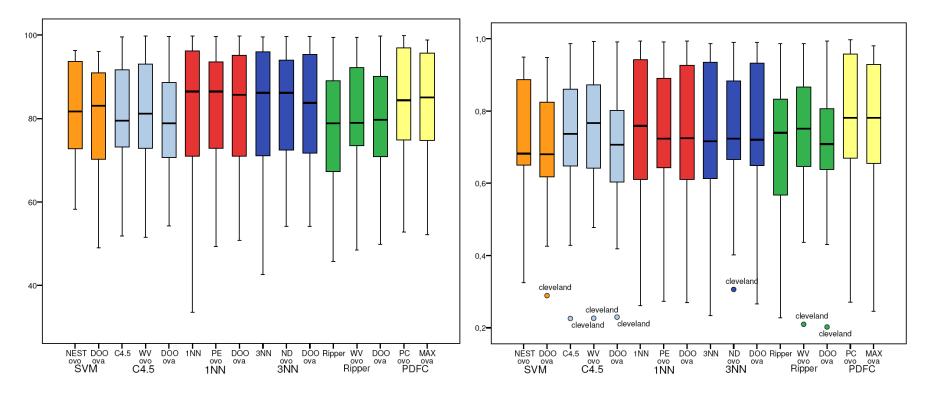


50/81

Box plots for test results

51/81

- OVA reduce performance in kappa
- OVO is more compact (hence, robust)



Statistical analysis

SVM and PDFC

OVO outperforms OVA with significant differences

Base Classifier	Comparison	Measure	R^+	R^-	Hypothesis ($\alpha = 0.05$)	p-value
SVM	$\operatorname{NEST}_{ovo}$ vs. DOO_{ova}	Accuracy Kappa	$153 \\ 156$	$\frac{37}{34}$	Rejected for $NEST_{ovo}$ Rejected for $NEST_{ovo}$	$0.01959 \\ 0.0141$
PDFC	PC_{ovo} vs. MAX_{ova}	Accuracy Kappa	$146 \\ 147$	$\frac{44}{43}$	Rejected for PC _{ovo} Rejected for PC _{ovo}	$0.04014 \\ 0.03639$

C4.5, 1NN, 3NN and Ripper

P-values returned by Iman-Davenport tests (* if rejected)

	C4.5	$1\mathrm{NN}$	3NN	Ripper
Accuracy	0.00134 *	0.70296	0.45982	0.00296 *
Kappa	0.00026 *	0.61089	0.07585	0.02982 *

Post-hoc test for C4.5 and Ripper

kNN, no statistical differences, but also not worse results

53/81

Statistical analysis

C4.5

WV for OVO outperforms the rest

	(a) Accuracy				(b) Kappa	
i	Hypothesis	p-value		i	Hypothesis	p-value
1	WV_{ovo} vs. DOO_{ova}	+(0.00197)	-	1	WV_{ovo} vs. DOO_{ova}	+(0.00057)
2	C4.5 vs. WV_{ovo}	=(0.05158)		2	C4.5 vs. WV_{ovo}	+(0.03496)
3	C4.5 vs. DOO_{ova}	=(0.14429)	_	3	C4.5 vs. DOO_{ova}	=(0.10476)

Ripper

WV for OVO is the best

No statistical differences with OVA

But OVO differs statistically from Ripper while OVA do not

	(a) Accuracy				(b) Kappa	
i	Hypothesis	p-value		i	Hypothesis	p-value
1	Ripper vs. WV _{ovo}	+(0.01050)	_	1	Ripper vs. WV _{ovo}	+(0.02833)
2	Ripper vs. DOO _{ova}	+(0.01050)		2	Ripper vs. DOO _{ova}	=(0.19437)
3	WV_{ovo} vs. DOO_{ova}	=(0.80775)	_	3	WV_{ovo} vs. DOO_{ova}	=(0.19437)

Outline

- 1. Introduction
- 2. **Binarization**
 - Decomposition strategies (One-vs-One, One-vs-All and Others)
 - State-of-the-art on Aggregations
 - One-vs-One
 - One-vs-All
- 3. Experimental Study
 - Experimental Framework
 - Results and Statistical Analysis
- 4. Discussion: Lessons Learned and Future Work
- 5. Conclusions for OVO vs OVA
- 6. Novel Approaches for the One-vs-One Learning Scheme
 - Dynamic OVO: Avoiding Non-competence
 - Distance-based Relative Competence Weighting Approach (DRCW-OVO)

M. Galar, A.Fernández, E. Barrenechea, H. Bustince, F. Herrera, An Overview of Ensemble Methods for Binary Classifiers in Multi-class Problems: Experimental Study on One-vs-One and One-vs-All Schemes. Pattern Recognition 44:8 (2011) 1761-1776, doi: 10.1016/j.patcog.2011.01.017

Discussion

Lessons learned

- Binarization is beneficial
 - Also when the problem can be tackled without it
- The most robust aggregations for OVO
 - WV, LVPC, PC and PE
- The most robust aggregations for OVA
 - Not clear
 - Need more attention, can be improved
- Too many approaches to deal with the unclassifiable region in OVO (NEST, BTC, DDAG)

Discussion

Lessons learned

- OVA problem
 - Imbalanced data-sets
 - Not against Rifkin's findings
 - But, this means that OVA are less robust
 - Need more fine-tuned base classifiers
- Importance of confidence estimates of base classifiers
- Scalability
 - Number of classes: OVO seems to work better
 - Number of instances: OVO natures make it more adequate

Discussion

Future work

- Detection of non-competent examples
- Techniques for imbalanced data-sets
- Studies on scalability
- OVO as a decision making problem
 - Suppose inaccurate or erroneous base classifiers
- New combinations for OVA
 - Something more than a tie-breaking technique
- Data-complexity measures
 - A priori knowledge extraction to select the proper mechanism

Outline

- 1. Introduction
- 2. **Binarization**
 - Decomposition strategies (One-vs-One, One-vs-All and Others)
 - State-of-the-art on Aggregations
 - One-vs-One
 - One-vs-All
- 3. Experimental Study
 - Experimental Framework
 - Results and Statistical Analysis
- 4. Discussion: Lessons Learned and Future Work
- 5. Conclusions for OVO vs OVA
- 6. Novel Approaches for the One-vs-One Learning Scheme
 - Dynamic OVO: Avoiding Non-competence
 - Distance-based Relative Competence Weighting Approach (DRCW-OVO)

M. Galar, A.Fernández, E. Barrenechea, H. Bustince, F. Herrera, An Overview of Ensemble Methods for Binary Classifiers in Multi-class Problems: Experimental Study on One-vs-One and One-vs-All Schemes. Pattern Recognition 44:8 (2011) 1761-1776, doi: 10.1016/j.patcog.2011.01.017

Conclusions

Goodness of using binarization

- Concretely, OVO approach
 - WV, LVPC, PC and PE
 - The aggregation is base learner dependant
- Low attention to OVA strategy
 - Problems with imbalanced data
- Importance of confidence estimates
- Many work remind to be addressed

M. Galar, A.Fernández, E. Barrenechea, H. Bustince, F. Herrera, An Overview of Ensemble Methods for Binary Classifiers in Multi-class Problems: Experimental Study on One-vs-One and One-vs-All Schemes. Pattern Recognition 44:8 (2011) 1761-1776, <u>doi: 10.1016/j.patcog.2011.01.017</u>

Outline

- 1. Introduction
- 2. **Binarization**
 - Decomposition strategies (One-vs-One, One-vs-All and Others)
 - State-of-the-art on Aggregations
 - One-vs-One
 - One-vs-All
- 3. Experimental Study
 - Experimental Framework
 - Results and Statistical Analysis
- 4. Discussion: Lessons Learned and Future Work
- 5. Conclusions for OVO vs OVA
- 6. Novel Approaches for the One-vs-One Learning Scheme
 - Dynamic OVO: Avoiding Non-competence
 - Distance-based Relative Competence Weighting Approach (DRCW-OVO)

M. Galar, A. Fernández, E. Barrenechea, H. Bustince, F. Herrera, Dynamic Classifier Selection for One-vs-One Strategy: Avoiding Non-Competent Classifiers. Pattern Recognition 46:12 (2013) 3412–3424, doi: j.patcog.2013.04.018

Non-Competent Classifiers:

- Those whose output is not relevant for the classification of the query instance
- They have not been trained with instances of the real class of the example to be classified

□ Classify *x*, whose real class is *c*₁

$$\square R(x) = \begin{pmatrix} c1 & c2 & c3 & c4 & c5 \\ c1 & - & 0,55 & 0,6 & 0,75 & 0,7 \\ c2 & 0,45 & - & 0,4 & 1 & 0,8 \\ c3 & 0,4 & 0,6 & - & 0,5 & 0,4 \\ c4 & 0,25 & 0,0 & 0,5 & - & 0,1 \\ c5 & 0,30 & 0,2 & 0,6 & 0,9 & - \end{pmatrix}$$

- Non-Competent Classifiers:
 - Consider WV aggregation, c₂ is predicted
 - None of the classifiers considering c₁ failed
 - Non-competent classifiers strongly voted for c₂

$$\square R(x) = \begin{pmatrix} c1 & c2 & c3 & c4 & c5 & WV \\ c1 & - & 0,55 & 0,6 & 0,75 & 0,7 & 2,6 \\ c2 & 0,45 & - & 0,4 & 1 & 0,8 & 2,65 \\ c3 & 0,4 & 0,6 & - & 0,5 & 0,4 & 1,9 \\ c4 & 0,25 & 0,0 & 0,5 & - & 0,1 & 0,85 \\ c5 & 0,30 & 0,2 & 0,6 & 0,9 & - & 2,1 \end{pmatrix}$$

Dynamic Classifier Selection:

- Classifiers specialized in different areas of the input space
- Classifiers complement themselves
- **The most competent one** for the instance is selected:
 - Instead of combining them all
 - Asumming that several misses can be done (they are corrected)

Avoding non-competence problem

- Adapting Dynamic Classifier Selection (DCS) to OVO
 Baseline classifiers competent over their pair of classes
- Search for a lower set of classes than those that problably the instance belongs to.
 - Remove those (probably) non-competent classifiers
 - Avoid misclassifications
- □ Neighbourhood of the instance is considered^[Woods97]
 - Local precisions cannot be estimated
 - □ Classes in the neighbourhood → reduced score matrix

[WOODS97] K. Woods, W. Philip Kegelmeyer, K. Bowyer. Combination of multiple classifiers using local accuracy estimates, IEEE Transactions on Pattern Analysis and Machine Intelligence 19(4):405-410, 1997.

Dynamic OVO: Avoiding Non-

competence

DCS ALGORITHM FOR OVO STRATEGY

- 1. Compute the k nearest neighbors of the instance $(k = 3 \cdot m)$
- Select the classes in the neighborhood (if it is unique k++)
- 3. Consider the subset of classes in the reduced-score matrix
- Any existing OVO aggregation can be used
- Difficult to misclassify instances
- k value is larger than the usual value for classification

Algorithm 1 Dynamic Classifier Selection for OVO scheme

- 1: procedure DYNAMIC OVO(e, R)
- 2: $k = 3 \cdot m$ \triangleright m is the number of classes
- 3: repeat
- 4: $Neighbours \leftarrow kNN(e)$
- 5: $C \leftarrow Classes(Neighbours) \triangleright$ We select the class labels in the neighbourhood
- 6: k + +
- 7: **until** #C > 1 **or** $k == 6 \cdot m$
- 8: if C > 1 then
- 9: $R' \leftarrow [R rows(i), cols(i)]; i \notin C$
- 10: return $R' \triangleright$ A subset of the score matrix
- 11: **else**
- 12: return $R \triangleright$ Standard OVO approach
- 13: **end if**
- 14: end procedure

□ Classify *x*, whose real class is c_1

$$\square R(x) = \begin{pmatrix} c1 & c2 & c3 & c4 & c5 \\ c1 & - & 0,55 & 0,6 & 0,75 & 0,7 \\ c2 & 0,45 & - & 0,4 & 1 & 0,8 \\ c3 & 0,4 & 0,6 & - & 0,5 & 0,4 \\ c4 & 0,25 & 0,0 & 0,5 & - & 0,1 \\ c5 & 0,30 & 0,2 & 0,6 & 0,9 & - \end{pmatrix}$$

- Consider WV aggregation, c₂ispredicted
- Noneof theclassifiersconsidering c₁failed
- Non-competentclassifiersstronglyvotedforc₂

$$\square R(x) = \begin{pmatrix} c1 & c2 & c3 & c4 & c5 & WV \\ c1 & - & 0,55 & 0,6 & 0,75 & 0,7 & 2,6 \\ c2 & 0,45 & - & 0,4 & 1 & 0,8 & 2,65 \\ c3 & 0,4 & 0,6 & - & 0,5 & 0,4 & 1,9 \\ c4 & 0,25 & 0,0 & 0,5 & - & 0,1 & 0,85 \\ c5 & 0,30 & 0,2 & 0,6 & 0,9 & - & 2,1 \end{pmatrix}$$

Applying DynamickNN

- Compute the kNN of x (k = $3 \cdot 5 = 15$)
- Subset of classes = $\{c_1, c_4, c_5\}$
- Remove {c₂, c₃} from the score-matrix
- Apply WV to thereduced score-matrix

$$\square R_{dyn}(x) = \begin{pmatrix} c1 & c2 & c3 & c4 & c5 & WV \\ c1 & - & 0,55 & 0,6 & 0,75 & 0,7 \\ c2 & 0,45 & - & 0,4 & 1 & 0,8 \\ c3 & 0,4 & 0,6 & - & 0,5 & 0,4 \\ c4 & 0,25 & 0,0 & 0,5 & - & 0,1 \\ c5 & 0,30 & 0,2 & 0,6 & 0,9 & - & 1,2 \end{pmatrix}$$

Dynamic OVO: Avoiding Non-

competence

□ Summary:

We avoid some of the non-competent classifiers by DCS

It is simple, yet powerful

- Positive synergy between Dynamic OVO and WV
- All the differences are due to the aggregations
 - Tested with same score-matrices in all methods
 - Significant differences only changing the aggregation

M. Galar, A. Fernández, E. Barrenechea, H. Bustince, F. Herrera, Dynamic Classifier Selection for Onevs-One Strategy: Avoiding Non-Competent Classifiers. Pattern Recognition 46:12 (2013) 3412–3424, doi: j.patcog.2013.04.018

Outline

- 1. Introduction
- 2. **Binarization**
 - Decomposition strategies (One-vs-One, One-vs-All and Others)
 - State-of-the-art on Aggregations
 - One-vs-One
 - One-vs-All
- 3. Experimental Study
 - Experimental Framework
 - Results and Statistical Analysis
- 4. Discussion: Lessons Learned and Future Work
- 5. Conclusions for OVO vs OVA
- 6. Novel Approaches for the One-vs-One Learning Scheme
 - Dynamic OVO: Avoiding Non-competence
 - Distance-based Relative Competence Weighting Approach (DRCW-OVO)

M. Galar, A. Fernández, E. Barrenechea, F. Herrera, DRCW-OVO: Distance-based Relative Competence Weighting Combination for One-vs-One Strategy in Multi-class Problems. Pattern Recognition 48 (2015), 28-42, doi: 10.1016/j.patcog.2014.07.023.

- Non-Competent Classifiers:
 - Those whose output is not relevant for the classification of the query instance
 - They have not been trained with instances of the real class of the example to be classified

$$R(\mathbf{x}) = \begin{pmatrix} \mathbf{c}_1 & \mathbf{c}_2 & \mathbf{c}_3 & \mathbf{c}_4 & \mathbf{c}_5 \\ \mathbf{c}_1 & - & 0.55 & 0.45 & 0.80 & 0.90 \\ \mathbf{c}_2 & 0.45 & - & 0.55 & 1.00 & 0.80 \\ \mathbf{c}_3 & 0.55 & 0.45 & - & 0.45 & 0.40 \\ \mathbf{c}_4 & 0.20 & 0.00 & 0.55 & - & 0.10 \\ \mathbf{c}_5 & 0.10 & 0.20 & 0.60 & 0.90 & - \end{pmatrix}$$

- Non-Competent Classifiers:
 - Consider WV aggregation, c₂ is predicted
 - None of the classifiers considering c₁ failed
 - Non-competent classifiers strongly voted for c₂

$$R(\mathbf{x}) = \begin{pmatrix} \mathbf{c}_1 & \mathbf{c}_2 & \mathbf{c}_3 & \mathbf{c}_4 & \mathbf{c}_5 & V & WV \\ \mathbf{c}_1 & - & 0.55 & 0.45 & 0.80 & 0.90 & 3 & 2.70 \\ \mathbf{c}_2 & 0.45 & - & 0.55 & 1.00 & 0.80 & 3 & 2.80 \\ \mathbf{c}_3 & 0.55 & 0.45 & - & 0.45 & 0.40 & 1 & 1.85 \\ \mathbf{c}_4 & 0.20 & 0.00 & 0.55 & - & 0.10 & 1 & 0.85 \\ \mathbf{c}_5 & 0.10 & 0.20 & 0.60 & 0.90 & - & 2 & 1.80 \end{pmatrix}$$

73/81

- Designed to address the non-competence classifier problem
- It carries out a dynamic adaptation of the scorematrix
 - More competent classifiers should be those whose pair of classes are "nearer" to the query instance.
 - Confidence degrees are weighted in accordance to the former distance.
 - This distance is computed by using the standard kNN approach

74/81

DRCW ALGORITHM FOR OVO STRATEGY

- 1. Compute the k nearest neighbors of each class for the given instance and store the average distances of the k neighbors of each class in a vector $\mathbf{d} = (d_1, ..., d_m)$.
- 2. A new score-matrix R^w is created where the output r_{ij} of a classifier distinguishing classes *i*, *j* are weighted as follows,

 $r^{w}_{ij} = r_{ij} \cdot w_{ij},$

where w_{ij} is the relative competence of the classifier on the corresponding output computed as d^2

$$w_{ij} = \frac{d_j^2}{d_i^2 + d_j^2},$$

being d_i the distance of the instance to the nearest neighbor of class *i*.

3. Use weighted voting strategy on the modified score-matrix R^w to obtain the final class.

$$Class = \arg \max_{i = 1, \dots, m} \sum_{1 \le j \ne i \le m} r_{ij} \cdot w_{ij}$$

Distance is computed with respect to all classes:

- k · m neighbors are used
- k = 1 is not the same as using 1NN classifier

With k = 1 a neighbor for each class is obtained, therefore it would use the m neighbours (1 per class). Next experimental example use k=5.

Classify *x*, whose real class is *c*₁

75/81

$$R(\mathbf{x}) = \begin{pmatrix} \mathbf{c}_1 & \mathbf{c}_2 & \mathbf{c}_3 & \mathbf{c}_4 & \mathbf{c}_5 \\ \mathbf{c}_1 & - & 0.55 & 0.45 & 0.80 & 0.90 \\ \mathbf{c}_2 & 0.45 & - & 0.55 & 1.00 & 0.80 \\ \mathbf{c}_3 & 0.55 & 0.45 & - & 0.45 & 0.40 \\ \mathbf{c}_4 & 0.20 & 0.00 & 0.55 & - & 0.10 \\ \mathbf{c}_5 & 0.10 & 0.20 & 0.60 & 0.90 & - \end{pmatrix}$$

- Distances to k nearest neighbors of each class (d) are computed: d = (0.8, 0.9, 0.6, 1.2, 1.6)
- \Box A Weight-matrix W is computed to representall w_{ii}

$$\square W(x) = \begin{pmatrix} c1 & c2 & c3 & c4 & c5 \\ c1 & - & 0,56 & 0,36 & 0,69 & 0,80 \\ c2 & 0,44 & - & 0,31 & 0,64 & 0,76 \\ c3 & 0,64 & 0,69 & - & 0,80 & 0,88 \\ c4 & 0,31 & 0,36 & 0,5 & - & 0,64 \\ c5 & 0,20 & 0,24 & 0,6 & 0,36 & - \end{pmatrix}$$

Apply theweight-matrix W to the score-matrix R

77/81

 WV isapplied to obtainthepredictedclass in DRCW-OVO

$$\square R^{W}(x) = \begin{pmatrix} c1 & c2 & c3 & c4 & c5 & WV \\ c1 & - & 0,31 & 0,16 & 0,55 & 0,72 & 1,74 \\ c2 & 0,20 & - & 0,17 & 0,64 & 0,61 & 1,66 \\ c3 & 0,35 & 0,31 & - & 0,36 & 0,35 & 1,37 \\ c4 & 0,06 & 0,00 & 0,11 & - & 0,06 & 0,24 \\ c5 & 0,02 & 0,05 & 0,07 & 0,32 & - & 0,47 \end{pmatrix}$$

Experimental Analysis

Table 8

Average accuracy results in test of the representative combinations, DCS method and DRCW-OVO method (with k=5) for each base classifier.

Data-set	C45			SVM _{Poly}			SVM _{Puk}			3NN			PDFC			Ripper		
	wv	DCS	DRCW	PE	DCS	DRCW	PE	DCS	DRCW	ND	DCS	DRCW	PC	DCS	DRCW	wv	DCS	DRCW
Autos	76.24	74,96	80.96	73.75	73.81	79.48	69.02	70.27	71.45	78.88	76.96	75.14	78.82	79.40	80.74	85.09	84.42	84.58
Car	94.68	94.50	96.99	93.58	93.58	97.16	64.99	84.84	81.65	93.57	93.40	96.93	99.77	99.88	99.42	92.59	93.52	96.35
Cleveland	52.55	53.55	55.23	58.97	59.31	58.66	47.53	47.87	48.88	58.31	57.96	56.61	53.92	55.93	56.61	52.18	54.54	56.90
Dermatology	95.24	98.32	98.06	94.71	94,99	95.55	97.20	97.20	97.48	92.14	95.49	96.90	84.66	93.85	91.90	93.32	94.43	95.27
Ecoli	81.06	81.94	85.58	79.37	79.63	82.25	77.11	77.11	81.64	81.66	82.52	84.30	84.07	83.78	84.68	78.47	78.74	82.34
Flare	75.34	73.62	75.27	75.43	75.46	75.86	69,28	73.39	72.04	71.21	71.59	72.43	73.64	73.92	73.69	75.24	74,83	75.60
Glass	72.03	71.63	74.81	62.14	63.14	71.04	73.72	74.15	76.19	73.35	74.27	74.33	68.72	70.12	70.12	68.56	68.12	75.40
Led7digit	64.51	65.35	65.33	67.90	68.09	66.47	61.33	61.57	62,54	66.68	67.88	68,26	62,17	62.60	65.42	63.98	63,86	64.19
Lymphography	74.50	76.44	76.44	82.48	82.48	83.10	81.87	81.87	82,50	68.19	79.55	79.52	83.19	83.19	83.19	75.68	75.68	77.04
Nursery	89.66	89,81	90.90	92.13	92.13	94.53	80.33	89.05	90,83	93.29	93.29	93.68	97.92	97.92	97.84	90.66	90,81	92.44
Pageblocks	95.64	95.46	95.82	94.90	94.53	95.27	94.58	94.76	95.11	95.63	95.46	95.09	95.09	94.91	95.09	95.45	95,11	96.00
Penbased	91.10	91,11	95.64	95.92	96.01	97.01	97.55	97.64	98.00	97.00	96.64	96,91	98.19	98.10	98.10	91.38	91,11	96.01
Satimage	82.15	82.92	85.41	84.48	84.16	86.34	84.77	85.70	87.56	87.58	87.73	88.34	86.79	86.95	87.25	82.61	82.14	86.01
Segment	96.28	96.71	97.97	92.68	92,90	95.58	97,23	97.36	97.40	96.58	96.80	96.84	97.32	97.36	97.27	96.58	96,88	97.84
Shuttle	99.59	99.68	99.72	96.55	97.61	99.50	99.59	99.63	99.63	99.50	99.40	99.40	97.43	98.03	98.76	99.40	99.68	99.54
Vehicle	72.33	72.81	73.88	73.53	74.00	74.48	81.92	81.92	82.04	72,11	72.23	72.23	84.53	84.40	84.41	69.27	70.20	71.29
Vowel	83.43	83.64	94.75	71.41	71.82	95.05	99.70	99.70	99,29	97.78	97.37	97.27	98.28	98.08	98.59	80.20	79.39	94.44
Yeast	59.57	59,84	60.46	60.52	59.98	60.92	59.31	59.51	62.14	56.68	56.54	58,30	60.25	59.98	60.92	58.30	58.10	61.81
Zoo	92,17	92.17	93.22	95.72	95.72	96.77	78.06	84.13	90.80	89.90	91.86	94.64	96.77	96.77	97.82	94.05	94.05	96.10
Average	81.48	81,81	84.02	81,38	81.55	84.48	79.74	81.98	83.01	82.63	83.52	84.06	84,29	85.01	85.36	81.21	81,35	84.17

¿Questions?

79/81

□ Thank you for your attention!

